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Abstract

This paper presents an analytical model to investigate the nonlinear dynamic behavior due to cage run-
out and number of balls in a rotating system supported by rolling element bearings. Due to run-out of the
cage, the rolling elements no longer stay equally spaced. The mathematical model takes into account the
sources of nonlinearity such as the Hertzian contact force and cage run-out resulting transition from no
contact to contact state between rolling elements and races. The contact between the rolling elements and
races is treated as nonlinear springs. The nonlinear stiffness is obtained by application of Hertzian contact
deformation theory. The implicit-type numerical integration technique Newmark-b with Newton–Raphson
method is used to solve the nonlinear differential equations iteratively. The results are presented in the form
of fast Fourier transformations (FFT) and phase trajectories. It is implied from the obtained FFT that due
to the non-uniform spacing the ball passage frequency is modulated with the cage frequency.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

An analysis of ball-bearing dynamic behavior is important to predict the system vibration
responses. The behavior of nonlinear systems often demonstrates unexpected behavior patterns
that are extremely sensitive to initial conditions. Many advanced bearing applications now require
understanding of dynamic effects and classical quasi-static analysis techniques of Jones [1], Harris
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

Fu unbalance force, N
I moment of inertia of each rolling

element
I shaft moment of inertia of the shaft
I in moment of inertia of the inner race
Iout moment of inertia of the outer race
k waviness order
K constant of proportionality, N/mm
Mc mass of the cage, kg
min mass of the inner race, kg
mj mass of the rolling elements, kg

mout mass of the outer race, kg
Nb number of balls
p empirical constant for a particular

geometry
q empirical constant for a particular

geometry
R radius of outer race, mm
r radius of inner race, mm
rin position of mass center of inner race
rout position of mass center of outer race
T kinetic energy of the bearing system
Tcage kinetic energy of the cage

T i_race kinetic energy of the inner race

To_race kinetic energy of the outer race

T r:e: kinetic energy of the rolling elements
V potential energy of the bearing system
V cage potential energy of the cage

V i_race potential energy of the inner race

Vo_race potential energy of the outer race

V r:e: potential energy of the rolling elements
V spring potential energy of the springs

xin; yin center of inner race
xout; youtcenter of outer race
d deformation at the point of contact at

inner and outer race, mm
G small run-out of cage, mm

ðf
�

Þin angular velocity of inner race

ðf
�

Þout angular velocity of outer race
oc angular velocity of cage relating to the

cage, rad/s
obp ball passage frequency, Hz

rj radial position of the rolling element

rr radius of each rolling element
yj angular position of rolling element

wj position of jth rolling element from the

center of inner race
FFT fast Fourier transformation

S.P. Harsha / Journal of Sound and Vibration 289 (2006) 360–381 361
[2], Palmgren [3]; others are inadequate for dynamic analysis. Cage failures due to high pocket
wear or destructive collision forces between the cage and rolling element or race lands, cage-
induced audio noise and structural vibration and excessive torque or torque noise are examples of
bearing performance characteristics that are significantly affected by dynamics. Ball-to-ball cage
interactions can induce excessive ball to race skidding and degraded performance and can cause
premature failure. When ball bearings are operated at high speed, they generate vibrations and
noise. The principle forces, which drive these vibrations, are time-varying nonlinear contact
forces, which exist between the various components of the bearings: balls, races and shafts. Since
today, ball bearings are used in the design of increasingly sophisticated arrangements, involving
high speeds, high temperature, heavy or unusual loading and requiring continuous operations,
automation etc.; a clear understanding of vibrations associated with them is needed. It is generally
accepted that it is impossible to produce a perfect surface or contour even with the best machine
tools and this applies also to ball-bearing manufacturing. In the shaft-bearing assembly supported
by perfect ball bearings, the vibration spectrum is dominated by the vibrations at the natural
frequency and the ball passage frequency (BPF). The vibrations at this later frequency are called
ball passage vibrations (BPV).
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Walters [4] developed an analytical model for ball bearing and cage dynamics with ball raceway
slip that was later modified by Gupta [5,6]. However, the solution of time-varying Hertzian
contact stress for each ball, along with integration of each cage impact with the balls or raceways
and integration of the ball traction/slip forces at each contact point on the inside and outside
raceways, results in long computer run times and can be so costly as to make parametric design
studies impractical. In addition, the Walters/Gupta model equations are written in the fixed
inertial coordinate system that leads to complex equations of motion, excessively long computer
times and computational errors due to computer numerical truncation. Kennel and Bupara [7]
developed a simplified method for analyzing ball and cage dynamics and they assumed that the
ball cage is only to move in the plane of its major diameter. Meeks et al. [8,9] have shown that the
ball cage motions are far too complex to be modeled with this extreme simplification of cage
motion. Meeks and Tran [10] developed an analytical model to study and optimize the bearing
and cage design parameters. Gad et al. [11] showed that resonance occurs when BPF coincides
with frequency of the system and they also pointed out that for certain speeds, BPF can exhibit its
sub- and super-harmonic vibrations for the shaft-ball-bearing system. Rahnejat and Gohar [12]
showed that even in the presence of elastohydrodynamic lubricating film between balls and the
races, a peak at the BPF appears in the spectrum. Aktürk et al. [13] performed a theoretical
investigation of the effect of varying the preload on the vibration characteristics of a shaft-bearing
system and also suggested that by taking correct number of balls and amount of preload in a
bearing untoward effect of the BPV can be reduced.

Harsha et al. [14] developed an analytical model to predict nonlinear dynamic response
in a rotor-bearing system due to surface waviness. The conclusion of this work shows that
for the outer race waviness, the severe vibrations occur when the number of balls and waves are
equal. In case of the inner race waviness, the peak amplitude of vibration can be at qowp � pocage.
For the waviness order iNb, peak amplitude of vibration and super-harmonic appear at
the wave passage speed ðowpÞ. Harsha et al. [15] analyzed the nonlinear behaviors of ball
bearing due to number of balls and preload effect. Nonlinear dynamic response is found to be
associated with the BPF. The amplitude of the vibration is considerably reduced if the number of
balls and preload are correctly selected. Harsha et al. [16] analyzed the nonlinear behaviors of the
high-speed horizontal balanced rotor supported by ball bearings. The conclusion of this work
shows that most severe vibrations occur when the BPF and its harmonics coincide with the
natural frequency. Harsha [17] analyzed the stability analysis of the rotor-bearing system. In the
analytical formulation the contacts between the balls and races are considered as nonlinear
springs, whose stiffness is obtained by using the Hertzian elastic contact deformation theory. The
appearance of regions of periodic, sub-harmonic and chaotic behavior is seen to be strongly
dependent on the radial internal clearance and rotor speed. Poincaré maps and frequency spectra
are used to elucidate and to illustrate the diversity of the system behavior.

In this paper, theoretical investigation was made to observe the effect of cage run-out and
number of balls on the vibration characteristics of the ball-bearing system. The system was
considered with the assumption that there is no friction between the rolling elements and
raceways. In terms of the feature that the nonlinear bearing forces act on the system, the implicit-
type numerical integration technique Newmark-b [18] with the Newton–Raphson method is used
to solve the nonlinear differential equations iteratively. The integration is needed at each step of
integrations to execute only on small parts of the system equations related to the nonlinear terms.
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The results obtained from a large number of numerical integrations are mainly presented in form
of FFT and phase plots.
2. The problem formulation

A schematic diagram of rolling element bearing is shown in Fig. 1. For investigating the
structural vibration characteristics of rolling element bearing, a model of bearing assembly can be
considered as a spring-mass system, in which the outer race of the bearing is fixed in a rigid
support and the inner race is fixed rigidly with the shaft. Elastic deformation between races and
rollers give a nonlinear force deformation relation, which is obtained by the Hertzian theory.
Other sources of stiffness variation are positive internal radial clearance, finite number of balls
whose position changes periodically and the inner and outer race waviness. These cause periodic
changes in stiffness of bearing assembly. Thus, the system undergoes nonlinear vibration under
dynamic conditions.

In the mathematical modeling, the rolling element bearing is considered as the spring-
mass system and rolling elements act as a nonlinear contact spring as a shown in Fig. 2.
Since, the Hertzian forces arise only when there is contact deformation, the springs are
required to act only in compression. In other words, the respective spring force comes into
play when the instantaneous spring length is shorter than its unstressed length, otherwise
the separation between the rolling element and the races takes place and the resultant force
is set to zero.
Fig. 1. A schematic diagram of a rolling element bearing.
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Fig. 2. Mass-spring model of the rolling element bearing.

Fig. 3. Non-uniform ball spacing due to cage run-out.
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2.1. Cage run-out

Due to the run-out of the cage, the rolling elements no longer stay equally spaced, as shown in
Fig. 3. The resulting variations of the circumferential angle for a small run-out ðGÞ is

dyj ¼
G
Rp

cosðyjÞ, (1)

where Rp denotes the pitch radius.
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Due to the non-uniform spacing, the BPF is modulated with the cage frequency. The angular
excitation frequencies due to the cage run-out are given by

o ¼ qobp � koc. (2)

2.2. Contact stiffness

Hertz considered the stress and deformation in the perfectly smooth, ellipsoidal, contacting
elastic solids. The application of the classical theory of elasticity to the problem forms the basis of
stress calculation for machine elements as ball and roller bearings. Therefore, the point contact
between the race and ball develops into an area contact, which has the shape of an ellipse with a
and b as the semi-major and semi-minor axes, respectively. The curvature sum and difference are
needed in order to obtain the contact force of the ball. The curvature sum

P
r as obtained from

Harris [2] is expressed as

X
r ¼ rI1 þ rI2 þ rII1 þ rII2 ¼

1

rI1
þ

1

rI2
þ

1

rII1
þ

1

rII2
. (3)
Plane 1 

Plane 2 

Body I 

rI2

rI1

rII1

rII2 Plane 1 

90˚ Body II 

Fig. 4. Geometry of contacting bodies.
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The curvature difference FðrÞ is expressed as

F ðrÞ ¼
ðrI1 � rI2Þ þ ðrII1 � rII2ÞP

r
. (4)

The parameters rI1; rI2; rII1; rII2; rI1;rI2; rII1; rII2 are given dependent upon calculations referring to
the inner and outer races as shown in Fig. 4. If the inner race is considered,

rI1 ¼ D=2; rI2 ¼ D=2; rII1 ¼ d=2; rII2 ¼ r

and

rI1 ¼ 2=D; rI2 ¼ 2=D; rII1 ¼ 2=d; rII2 ¼ �1=r. (5)

If the outer race is considered, they are given as

rI1 ¼ D=2; rI2 ¼ D=2; rII1 ¼ D=2; rII2 ¼ R

and

rI1 ¼ 2=D; rI2 ¼ 2=D; rII1 ¼ �2=D; rII2 ¼ �1=R. (6)

As per the sign convention followed, negative radius denotes a concave surface. Using Table 2
calculation of all the parameters including curvature difference at inner and outer race can be
done. For the contacting bodies made of steel, the relative approach between two contacting and
deforming surfaces is given by

d ¼ 2:787 � 10�8Q2=3
X

r
� �1=3

d	, (7)

where d	 is a function of FðrÞ.
Hence, the contact force (Q) is

Q ¼ ð3:587 � 107Þ
3=2

X
r

� ��1=2
ðd	Þ�3=2

� �
d3=2

ðNÞ. (8)

The elastic modulus for the contact of a ball with the inner race is

Ki ¼
Q

din
¼ ð3:587 � 107Þ

3=2
X

ri

� ��1=2
ðd	i Þ

�3=2
ðdÞ1=2 ðN=mmÞ. (9)

And for the contact of a ball with the outer race it is

Ko ¼
Q

dout
¼ ð3:587 � 107Þ

3=2
X

ro

� ��1=2
ðd	oÞ

�3=2
ðdÞ1=2 ðN=mmÞ. (10)

Then the effective elastic modulus K for the bearing system is written as

K ¼
1

ð1=K
1=n
i þ 1=K1=n

o Þ
n
. (11)

In Eqs. (8) and (9), the parameters d	i and d	o can be attained from Table 1, if the values of F ðrÞi
and F ðrÞo are available using Table 2. The effective elastic modulus ðKÞ for the bearing system
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Table 1

Dimensional contact parameters [2]

F ðrÞ d

0 1

0.1075 0.997

0.3204 0.9761

0.4795 0.9429

0.5916 0.9077

0.6716 0.8733

0.7332 0.8394

0.7948 0.7961

0.83595 0.7602

0.87366 0.7169

0.90999 0.6636

0.93657 0.6112

0.95738 0.5551

0.97290 0.4960

0.983797 0.4352

0.990902 0.3745

0.995112 3176

0.997300 0.2705

0.9981847 0.2427

0.9989156 0.2106

0.9994785 0.17167

0.9998527 0.11995

1 0

Table 2

Geometric and physical properties used for the rolling element bearings

Mass of rolling element ðmjÞ 0.024 kg

Mass of the inner race ðminÞ 0.06 kg

Mass of the outer race ðmoutÞ 0.065 kg

Mass of the shaft ðmcÞ 0.009 kg

Diameter of inner race with point of contact with the rolling element ð2rÞ 18.738mm

Diameter of outer race with point of contact with the rolling element ð2RÞ 28.262mm

Ball diameter ðDÞ 4.762mm

Radial load ðW Þ 24N

Angular velocity of inner race 5000 rev/min

Cage run-out ðGÞ 0:01mm

Initial radial position of jth rolling element ðrjÞ 27mm

Initial position of center of inner race ðxin; yinÞ ð0; 0Þmm

Initial position of center of inner race ðxout; youtÞ ð0; 0Þmm
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ARTICLE IN PRESS

S.P. Harsha / Journal of Sound and Vibration 289 (2006) 360–381368
using geometrical and physical parameters is written as

K ¼ 7:055 � 105
ffiffiffi
d

p
ðN=mmÞ. (12)

2.3. Derivation of governing equations of motion

A real rotor-bearing system is generally very complicated and difficult to model; so for an
effective and simplified mathematical model the following assumptions are made:
1.
 Deformations occur according to the Hertzian theory of elasticity. Small elastic motions of the
rolling elements and the rings are considered but plastic deformations are neglected.
2.
 The rolling elements, the inner and outer races and the rotor have motions in the plane of
bearing only.
3.
 The angular velocity of the cage is assumed to be constant.

4.
 The rollers in a rolling element bearing are assumed to have no angular rotation about their

axes, i.e. no skewing. Hence, there is no interaction of the corners of the rollers with the cage
and the flanges of the races.
5.
 All the bearing components and the rotor are rigid, i.e. there is no bending.

6.
 The bearings are assumed to operate under isothermal conditions. Hence, all thermal effects that

may arise due to the rise in temperature, such as change of lubricant viscosity, expansion of the
rolling elements and the races and reduction of endurance of the material, are considered absent.
7.
 There is no slipping of balls as they roll on the surface of races. Since there is perfect rolling of
the balls on the surface of races and the two points of ball touching the races have different
linear velocities, the center of the ball has a resultant translational velocity.
8.
 The damping of a ball bearing is very small. This damping is present because of friction and
small amount of lubrication. The estimation of damping of ball bearing is very difficult because
of the dominant extraneous damping that swamps the damping of the bearing.
9.
 The cage ensures the constant angular separation ðbÞ between rolling elements; hence there is
no interaction between rolling elements. In addition, at any given instant, some of the rolling
elements will contact both races. Hence,

b ¼
2p
Nb

. (13)

The equations of motion that describe the dynamic behavior of the complete model
can be derived by using Lagrange’s equation for a set of independent generalized
coordinates as

d

dt

qT

qfp
�
g
�

qT

qfpg
þ

qV

qfpg
¼ f f g, (14)

where T ; V ; p and f are kinetic energy, potential energy, vector with generalized degree-of-
freedom (dof) coordinate and vector with generalized contact forces, respectively. The kinetic and
potential energies can be subdivided into the contributions from the various components, i.e. from
the rolling elements, the inner race, the outer race and the rotor.
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The total kinetic energy (T) of the rotor-bearing system is the sum of the rolling elements, inner
and outer races and the rotor:

T ¼ T r:e: þ T i_race þ To_race þ T cage. (15)

The subscripts i_race, o_race and cage refer to, respectively, the inner race, the outer race and the
cage. The subscript r.e. indicates the rolling elements.

The potential energy is provided by deformations of the balls with the races and deformations
occur according to the Hertzian contact theory of elasticity. Potential energy formulation is
performed taking datum as the horizontal plane through the global origin. The total potential energy
(V) of the bearing system is the sum of the balls, inner and outer races, springs and the rotor:

V ¼ V r:e: þ V i_race þ Vo_race þ V springs þ V cage, (16)

where V r:e:, V i_race; Vo_race and V cage are the potential energies due to elevation of the rolling
elements, inner and outer races and the rotor, respectively. V springs is the potential energy due to
nonlinear spring contacts between rollers and the races.

2.3.1. Contribution of the inner race

Apart from local deformations in the contacts, the inner race is considered as a rigid body. The
kinetic energy of the inner race about its center of mass is evaluated in x- and y-frame. The
position of the origin of the moving frame relative to the reference frame is described by
transitional dof x

�

in and y
�

in.
The kinetic energy expression for the inner race is

T i_race ¼
1
2

minðrin
!
�

� rin
!
�

Þ þ 1
2
I in f

� 2

in. (17)

The displacement vector showing the location of the inner race center with respect to that of the
outer race center is then given by

rin
!

¼ rout
!

þ rin_out
!

(18)

or

rin
!

¼ ðxin
!

þ xout
!

Þî þ ðyin

!
þ yout

!
Þĵ. (19)

Differentiating rin with respect to time ðtÞ and putting that value in Eq. (17) gives

T i_race ¼
1
2

min x
� 2

in þ y
�2

in

� �
þ 1

2
I inf

� 2

in. (20)

Since the position of the inner race is defined from the outer race center, the potential energy for
the inner race is

V i_race ¼ mingðyin_out þ youtÞ. (21)

2.3.2. Contribution of the outer race
The outer race is also considered as a rigid body and it is assumed that the outer race is

stationary. Hence, r
�

out ¼ 0 and f
�

out ¼ 0: The kinetic energy expression for the outer race is zero.
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The potential energy of the outer race is

Vo_race ¼ moutgyout. (22)

2.3.3. Contribution of the rolling elements
The rolling elements are also considered as rigid bodies. For the determination of their

contribution to the kinetic energy, the position of the jth-rolling element is described by two
transitional dof,

ðrj

�
þ rout

�
Þ and fj

�

.

The kinetic energy due to rolling elements obtained as a summation of those from each
element is

T r:e: ¼
XNb

j¼1

Tj. (23)

The position of the center of roller is defined with respect to the outer race center. Hence, the
kinetic energy of the rolling elements may be written as

Tj ¼
1
2

mj rj

!
�

þ rout
!
�

� 	
� rj

!
�

þ rout
!
�

� 	
þ 1

2
I jf

� 2

j . (24)

The displacement vector showing the location of jth rolling elements is

rj

!
¼ ðrj

!
cos yjÞî þ ðrj

!
sin yjÞĵ. (25)

And for the outer race center it is

r
!

out ¼ x
!

out î þ y
!

out ĵ. (26)

The summation of Eqs. (25) and (26) after differentiation with respect to time (t) leads to the
following expression:

rj

!
�

þ rout
!
�

� 	
� rj

!
�

þ rout
!
�

� 	
¼ r2

j

�

cos2 yj þ r2
j sin2 yj � y

�2

j � 2 rj

�
�rj � yj

�

cos yj sin yj

þ x
�2

out þ 2x
�

outðr
�

j cos yj � rj sin yj � y
�

jÞ þ r2
j

�

sin2 yj

þ r2
j cos2 yj � y

2
j

�

þ2 rj

�
�rj � yj

�

cos yj sin yj

þ y
�2

out þ 2y
�

outðr
�

j cos yj � rj sin yj � y
�

jÞ. ð27Þ

The outer race is assumed to be stationary; hence x
�

out ¼ 0 and y
�

out ¼ 0. Therefore, Eq. (27)
becomes

rj

!
�

þ rout
!
�

� 	
� rj

!
�

þ rout
!
�

� 	
¼ r2

j

�

cos2 yj þ r2
j sin2 yj � y

�2

j þ r2
j

�

sin2 yj þ r2
j cos2 yj � y

2
j

�

(28)
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or

rj

!
�

þ rout
!
�

� 	
� rj

!
�

þ rout
!
�

� 	
¼ r2

j

�

þr2
j � y

2
j

�� 	
. (29)

From Eq. (24), we get

Tj ¼
1
2

mj r
�2

j þ r2
j � y

�2

j

� 	
þ 1

2
I jf

� 2

j . (30)

It is assumed that there is no slip; hence, the relative transitional velocity of the outer race and
rolling element must be the same and in opposite direction. Therefore, the contact equation for
the jth rolling element and the outer race can be written as

R f
�

out � yj

�
� 	

¼ �rr fj

�

�y
�

j

� 	
. (31)

Since the outer race is stationary,

f
�

out ¼ 0. (32)

The rotation of the jth rolling element about its center of mass is

fj

�

¼ yj

�

1 þ
R

rr

� 	
. (33)

Now the kinetic energy of the rolling elements can be written as

T r:e: ¼
XNb

j¼1

1

2
mj r

�2

j þ r2
j : y

2
j

�� 	
þ

1

2
I jy

�2

j 1 þ
R

rr

� 	2

. (34)

The position of the center of roller is defined with respect to the outer race center. Hence, the
potential energy of the rolling elements may be written as

V r:e: ¼
XNb

j¼1

mjgðrj sin yj þ youtÞ (35)

or

V r:e: ¼ mgNbyout þ
XNb

j¼1

ðmjgrj sin yjÞ. (36)

2.3.4. Contribution of the cage

The kinetic energy of the cage is calculated by assuming that its center remains coincident with
the inner race. Hence, the kinetic energy of the cage is

Tcage ¼
1
2

mc x
�2

in þ y
�2

in

� �
þ 1

2
Icy

�2

c . (37)
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The cage center coincides with the inner race center and the position of the inner race center
is defined with respect to the outer race center. Hence, the potential energy of the cage is
expressed as

V cage ¼ mcgðyin_out þ youtÞ. (38)

2.3.5. Contribution of the contact deformation
The contacts between balls and races are treated as nonlinear springs, whose stiffness is

obtained by the Hertzian theory of elasticity. The expression of potential energy due to the
contact deformation of the springs is

V spring ¼
XNb

j¼1

1

2
kind

2
in þ

XNb

j¼1

1

2
koutd

2
out, (39)

where kin and kout are the nonlinear stiffness due to Hertzian contact effects.
The deformation at contact points between the jth rolling element and inner race is

din ¼ ½fr þ rr þ Gg � wj�. (40)

In this expression, if fr þ rr þ Gg4wj, compression takes place and restoring force acts.
If fr þ rr þ Ggowj, no compression and restoring force is set to zero.
Similarly, at the outer race the deformation at the contact points is

dout ¼ ½R � frj þ rr þ Gg�. (41)

In this expression, if Rofrj þ rr þ Gg, compression takes place and restoring force acts.
If R4frj þ rr þ Gg, no compression and restoring force is set to zero.
2.4. Equations of motion

The kinetic energy and potential energy contributed by the inner race, outer race, balls, shaft and
springs can be differentiated with respect to the generalized coordinates rj ð j ¼ 1; 2; . . . ;NbÞ; xin,
and yin to obtain the equations of motion. For the generalized coordinates rj, where
j ¼ 1; 2; . . . ;Nb, the equations are

mj rj

��
þmjg sin yj þ mjrjy

�2

� ðkinÞ½ðr þ rr þ GÞ � wj�þ
qwj

qrj

þ ðkoutÞ½R � ðrj þ rr þ GÞ�þ

þ
1

2

qkin

qrj

½ðr þ rr þ GÞ � wj�
2
þ þ

1

2

qkout

qrj

½R � ðrj þ rr þ GÞ�2þ ¼ 0; j ¼ 1; 2; . . . ;Nb. ð42Þ

For the generalized coordinate xin the equation is

ðmin þ mcÞxin
��

�
XNb

j¼1

kin½ðr þ rr þ GÞ � wj�þ
qwj

qxin
¼ Fu sinðotÞ. (43)
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For the generalized coordinate yin the equation is

ðmin þ mcÞ yin

��
þ ðmin þ mcÞg �

XNb

j¼1

kin½ðr þ rr þ GÞ � wj�þ
qwj

qyin

¼ W þ Fu cosðotÞ. (44)

This is a system of ðNb þ 2Þ second-order, nonlinear differential equations. There is an external
radial force allowed to act on the bearing system and no external mass is attached to the outer race.
The ‘‘+’’ sign as subscript in these equations signifies that if the expression inside the bracket is
greater than zero, then the rolling element at angular location yj is loaded giving rise to restoring
force and if the expression inside the bracket is negative or zero, then the rolling element is not in
the load zone, and restoring force is set to zero. For the balanced rotor condition, the unbalance
force ðFuÞ is set to be zero.

The deformation of spring at inner race wj (from Fig. 2) can be obtained as

xin þ wj cos yx ¼ xout þ rj cos yj, (45)

yin þ wj sin yx ¼ yout þ rj sin yj. (46)

From these two equations, the expression for wj is obtained as

wj ¼ ½ðxout � xinÞ
2
þ r2

j þ 2rjðxout � xinÞ cos yj þ 2rjðyout � yinÞ sin yj þ ðyout � yinÞ
2
�1=2. (47)

Now the partial derivatives of wj with respect to rj, xin and yin are

qwj

qrj

¼
rj þ ðxout � xinÞ cos yj þ ðyout � yinÞ sin yj

wj

, (48)

qwj

qxin
¼

ðxout � xinÞ � rj cos yj

wj

, (49)

qwj

qyin

¼
ðyout � yinÞ � rj sin yj

wj

. (50)

The nonlinear stiffness associated with point contact of spring for the inner and outer races is
calculated by using Eq. (12):

ðkinÞ ¼ 7:055 � 105½fr þ rr þ Gg � wj�
1=2, (51)

ðkoutÞ ¼ 7:055 � 105½R � frj þ rr þ Gg�1=2, (52)

ðqkinÞ

qrj

¼ �3:5725 � 105½fr þ rr þ Gg � wj�
�1=2 qwj

qrj

, (53)

ðqkoutÞ

qrj

¼ 3:5725 � 105½R � frj þ rr þ Gg��1=2. (54)
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2.5. BPF

When the shaft is rotating, applied loads are supported by a few balls restricted to a
narrow load region and the radial position of the inner race with respect to the outer race
depends on the elastic deflections at the ball to raceways contacts. Balls are deformed as they
enter the loaded zone where the mutual convergence of the bearing races takes place and the
balls rebound as they move to an unloaded region. Time taken by the shaft to regain its initial
position is

t ¼
time for a complete rotation of cage

Nb

. (55)

As the time needed for a complete rotation of the cage is 2p=oc, the shaft will be excited at the
frequency of ðNb � ocÞ known as BPF.

Hence, BPF ðobpÞ is

obp ¼
1

2
Nb oinner 1 �

rj

Rp


 �
þ

1

2
Nboouter 1 þ

rj

Rp


 �
. (56)

Vibrations associated with the BPF are known as BPV or the elastic compliance vibrations. The
effect of BPF can be worst when it coincides with a natural frequency of the shaft-bearing system.
3. Results of the numerical simulations

The equations of motion (42–44) are solved using the modified Newmark-b method to obtain
the radial displacement and velocity of the rolling elements. In order to eliminate the effect of the
natural frequency, an artificial damping was introduced into the system. With this damping,
transient vibrations are eliminated. Thus, peak steady-state amplitude of vibration can be
measured. The longer the time to reach steady-state vibrations, the longer CPU time needed and
hence the more expensive the computation. A value of c ¼ 200Ns=m was chosen. To observe the
nonlinear behavior of the system, parameters of the ball bearing are selected and are shown in
Table 2.

3.1. Initial conditions

The initial conditions and step size are very important for successful and economic
computational solution. Particularly for nonlinear systems, different initial conditions mean a
totally different system and hence different solutions. The larger the time step Dt, the faster the
computation. On the other hand, the time step should be small enough to achieve an adequate
accuracy. Also, very small time steps can increase the truncation errors. Therefore, an
optimization should be made between them. The time step for the investigation is assumed as
Dt ¼ 10�5 s. At time t ¼ 0 the following assumptions are made:
(i)
 The shaft is held at the center of the bearing and all balls are assumed to have equal axial
preload.
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(ii)
 The shaft is then given initial displacements and velocities. For fast convergence the initial
displacements are set to the following values: x0 ¼ 10�6 m and y0 ¼ 10�6 m. The initial
velocities are assumed to be zero: x0

�
¼ 0 and y0

�
¼ 0.
When t � Dt the initial conditions have already passed and the normal procedure commences.

3.2. Cage run-out

The time history of the nonlinear responses has been examined for periodic behavior. This is
done by examining the time series output, once per cycle, for sufficiently long segments of time
step so that multiple periodic and aperiodic behaviors could be discerned from the post-transient
solutions. Frequency spectra are generated for studying the stability and nature of solution.
Aperiodic behavior in a deterministic dynamical system is characterized by broadband frequency
spectra. In sub-synchronous frequencies the significant energy shows the aperiodic nature of the
response. Due to the cage run-out, the rolling elements no longer stay equally spaced. Due to the
non-uniform spacing, the BPF is modulated with the cage frequency. The resulting variation of
the circumferential angle for a small run-out ðGÞ is 0:01mm.

Fig. 5 shows the vibrations for the bearing with a cage run-out having different numbers of
balls. For a relatively small number of balls, the peak amplitudes of vibrations at BPF are more
significant. Since, a small number of balls support the rotor, the natural frequency of the
system is relatively low. When the number of balls is 3, the natural frequency coincides
with the BPF ðobp ¼ 102HzÞ as shown in Fig. 5(a). The amplitude of the peak is 12mm. Other
major peaks at super-harmonics of vibration appear at an integral multiple of the BPF
ð2obp ¼ 204Hz; 3obp ¼ 306Hz; 4obp ¼ 408HzÞ. The BPF ðobpÞ and its harmonics character of
the frequency spectra are also brought out by the phase plot with the closed orbits. For
a system having 4 balls, the peak amplitude decreases and the natural frequency that coincides
with BPF is pushed to a higher value of ðobp þ oc ¼ 140HzÞ as shown in Fig. 5(b). The amplitude
of the peak is 10mm. Other major peaks at super-harmonics of vibration appear at an integral
multiple of the ball passage with cage frequency ð2obp þ 2oc ¼ 280Hz; 3obp þ 3oc ¼ 420HzÞ.
The super-harmonic character of the frequency spectra is also confirmed by phase plot with its
closed orbits.

For 5 balls, the peak amplitude of vibration appears in the spectrum at the BPF ðobp ¼ 170HzÞ
as shown in Fig. 5(c). The amplitude of the peak is 4:2mm. Other minor peaks appear at an
integral multiple of the BPF ð2obp ¼ 340Hz; 3obp ¼ 510HzÞ. One peak at the developing stage
appears where the BPF is modulated with the cage frequency, i.e. at 2obp þ 3oc ¼ 442Hz. The
closed loop of phase plot confirms the characteristics of the super-harmonic nature of frequency
spectra. When the number of balls is 6, the peak amplitude of vibration appears in the spectrum at
the BPF ðobp ¼ 204HzÞ as shown in Fig. 5(d). The amplitude of the peak is 2mm. Other minor
peaks appear at an integral multiple of the BPF ð2obp ¼ 408Hz; 3obp ¼ 612HzÞ. One peak
appears where the BPF is modulated with the cage frequency, i.e. at 2obp þ 2oc ¼ 476Hz.
For 7 balls, the peak amplitude appears at the BPF ðobp ¼ 238HzÞ as shown in Fig. 5(e). The
amplitude of the peak is 0:7mm. Other minor peaks appear at an integral multiple of the BPF
ð2obp ¼ 476Hz; 3obp ¼ 714HzÞ. One peak appears where the BPF is modulated with the cage
frequency, i.e. at 2obp þ oc ¼ 510Hz. For 8 balls, the peak amplitude of vibration appears at
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ðobp ¼ 272HzÞ as shown in Fig. 5(f). The amplitude of the peak is 0:6mm. Other major peaks at
super-harmonics of vibration appear at ðobp þ 8oc ¼ 544HzÞ. Similarly, for 9–17 balls, the peak
amplitudes of vibrations appear in the spectrum at an integer multiple of the number of balls and
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the cage speed (BPF) as shown in Figs. 5(g)–(o). Other major peaks in these vibration spectrums
are shown in Table 3.

When the number of balls is further increased, a peak at BPF always appears in the vibration
spectrum but with relatively lower amplitude ðo0:5mmÞ, while the effects of super-harmonics
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disappear as the number of balls increases from 13 and onwards and the BPF appears at sub-
harmonic in the vibration spectrum. All results show that cage run-out in the bearing due to the
non-uniform spacing of the BPF is modulated with the cage frequency.
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Table 3

Frequencies of the possible vibrations for different number of balls in a bearing due to cage run-out

Number of balls Peak amplitude (magnitude) Harmonic in bearing spectrum

3 obp ð12mmÞ 2obp, 3obp, 4obp

4 obp þ oc ð10mmÞ 2obp þ 2oc, 3obp þ 3oc

5 obp ð4:2mmÞ 2obp, 3obp, 2obp þ 3oc

6 obp ð2mmÞ 2obp, 3obp, 2obp þ 2oc

7 obp ð0:8mmÞ 2obp, 3obp, 2obp þ oc

8 obp ð0:6mmÞ obp þ 8oc

9 obp ð0:4mmÞ obp þ 7oc

10 obp ð0:19mmÞ 2obp, obp þ 6oc

11 obp ð0:18mmÞ 2obp, obp þ 6oc

12 obp ð0:14mmÞ 2obp, obp þ 5oc

13 obp þ 5oc ð0:09mmÞ obp

14 obp ð0:089mmÞ 2obp, obp þ 4oc

15 obp þ 4oc ð0:088mmÞ obp

16 obp þ 3oc ð0:085mmÞ obp, 2obp

17 obp þ 2oc ð0:084mmÞ obp
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4. Conclusion

In the present investigation, an analytical model of a rotor-bearing system has been developed
to obtain the nonlinear vibration response due to cage run-out. In this paper, the nonlinear
response of a perfectly rigid balanced rotor due to self-excited vibration in a ball bearing with
small cage run-out is studied. The self-excited vibrations are due to varying compliance of the
bearing, which arises because of the geometric and elastic characteristics of the bearing assembly
varying according to cage position. Since the parametrically excited vibrations that occur
irrespective of the quality and accuracy of the bearing are BPV (according to Sunnersjo [19]), the
peak amplitude of vibrations that appear in the spectrum are at BPF. This is proved in the results
of the presented article. The following conclusions are drawn from the obtained results:
(1)
 A single off-sized ball within a bearing produces vibrations at the cage speed. This is true for
linear and nonlinear ball-to-race deflection coefficient.
(2)
 The highest axial vibrations due to cage run-out are at a speed of the number of balls times the
cage speed, i.e. at the BPF, which is proved by Gad et al. [11] and Rahnejat and Gohar [12].
(3)
 Increasing the number of balls means increasing the number of balls supporting the rotor
therefore increasing the system stiffness and reducing the vibration amplitude. This effect is
exhibited in Fig. 5, which shows the phase plane diagram of the displacements for different
numbers of balls when the rotor is released from an arbitrary position for free vibration
without damping. When the number of balls is increased, the center of vibration approaches
zero implying a stiffer system, which was theoretically proved by Aktürk et al. [13]. From this
it can be predicted that the number of balls will reduce the effect of the BPF and because of the
cage run-out, the modulating frequency dominant in the vibration spectrum.
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(4)
 The number of balls in the bearings can be of importance in the rotor bearing dynamics and
should be considered at the design stage.
(5)
 The highest axial vibrations due to cage run-out are at ðo ¼ qobp � koc HzÞ. Hence, from this
analysis the prediction about the major peaks at frequencies can be made for cage run-out
with different number of balls.
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